3.7.32 \(\int \frac {(d+e x)^2}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\) [632]

3.7.32.1 Optimal result
3.7.32.2 Mathematica [A] (verified)
3.7.32.3 Rubi [A] (verified)
3.7.32.4 Maple [C] (verified)
3.7.32.5 Fricas [B] (verification not implemented)
3.7.32.6 Sympy [F(-1)]
3.7.32.7 Maxima [F]
3.7.32.8 Giac [B] (verification not implemented)
3.7.32.9 Mupad [B] (verification not implemented)

3.7.32.1 Optimal result

Integrand size = 30, antiderivative size = 363 \[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=-\frac {(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {(d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {\sqrt {c} \left (b^2+20 a c+\frac {b \left (b^2-52 a c\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a \left (b^2-4 a c\right )^2 \sqrt {b-\sqrt {b^2-4 a c}} e}+\frac {\sqrt {c} \left (b^2+20 a c-\frac {b \left (b^2-52 a c\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a \left (b^2-4 a c\right )^2 \sqrt {b+\sqrt {b^2-4 a c}} e} \]

output
-1/4*(e*x+d)*(b+2*c*(e*x+d)^2)/(-4*a*c+b^2)/e/(a+b*(e*x+d)^2+c*(e*x+d)^4)^ 
2+1/8*(e*x+d)*(b*(8*a*c+b^2)+c*(20*a*c+b^2)*(e*x+d)^2)/a/(-4*a*c+b^2)^2/e/ 
(a+b*(e*x+d)^2+c*(e*x+d)^4)+1/16*arctan((e*x+d)*2^(1/2)*c^(1/2)/(b-(-4*a*c 
+b^2)^(1/2))^(1/2))*c^(1/2)*(b^2+20*a*c+b*(-52*a*c+b^2)/(-4*a*c+b^2)^(1/2) 
)/a/(-4*a*c+b^2)^2/e*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/16*arctan((e*x 
+d)*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b^2+20*a*c-b*(- 
52*a*c+b^2)/(-4*a*c+b^2)^(1/2))/a/(-4*a*c+b^2)^2/e*2^(1/2)/(b+(-4*a*c+b^2) 
^(1/2))^(1/2)
 
3.7.32.2 Mathematica [A] (verified)

Time = 2.86 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.05 \[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\frac {-\frac {4 \left (b (d+e x)+2 c (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac {2 (d+e x) \left (b^3+8 a b c+b^2 c (d+e x)^2+20 a c^2 (d+e x)^2\right )}{a \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac {\sqrt {2} \sqrt {c} \left (b^3-52 a b c+b^2 \sqrt {b^2-4 a c}+20 a c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \sqrt {c} \left (-b^3+52 a b c+b^2 \sqrt {b^2-4 a c}+20 a c \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}}}{16 e} \]

input
Integrate[(d + e*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]
 
output
((-4*(b*(d + e*x) + 2*c*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 + 
c*(d + e*x)^4)^2) + (2*(d + e*x)*(b^3 + 8*a*b*c + b^2*c*(d + e*x)^2 + 20*a 
*c^2*(d + e*x)^2))/(a*(b^2 - 4*a*c)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) 
 + (Sqrt[2]*Sqrt[c]*(b^3 - 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[ 
b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c 
]]])/(a*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sqrt[c 
]*(-b^3 + 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2 - 4*a*c])*Arc 
Tan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4* 
a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(16*e)
 
3.7.32.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1462, 1439, 1492, 25, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx\)

\(\Big \downarrow \) 1462

\(\displaystyle \frac {\int \frac {(d+e x)^2}{\left (c (d+e x)^4+b (d+e x)^2+a\right )^3}d(d+e x)}{e}\)

\(\Big \downarrow \) 1439

\(\displaystyle \frac {\frac {\int \frac {b-10 c (d+e x)^2}{\left (c (d+e x)^4+b (d+e x)^2+a\right )^2}d(d+e x)}{4 \left (b^2-4 a c\right )}-\frac {(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 1492

\(\displaystyle \frac {\frac {\frac {(d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{2 a \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac {\int -\frac {c \left (b^2+20 a c\right ) (d+e x)^2+b \left (b^2-16 a c\right )}{c (d+e x)^4+b (d+e x)^2+a}d(d+e x)}{2 a \left (b^2-4 a c\right )}}{4 \left (b^2-4 a c\right )}-\frac {(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {c \left (b^2+20 a c\right ) (d+e x)^2+b \left (b^2-16 a c\right )}{c (d+e x)^4+b (d+e x)^2+a}d(d+e x)}{2 a \left (b^2-4 a c\right )}+\frac {(d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{2 a \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 \left (b^2-4 a c\right )}-\frac {(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {\frac {\frac {1}{2} c \left (-\frac {52 a b c}{\sqrt {b^2-4 a c}}+\frac {b^3}{\sqrt {b^2-4 a c}}+20 a c+b^2\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d(d+e x)+\frac {1}{2} c \left (\frac {52 a b c}{\sqrt {b^2-4 a c}}-\frac {b^3}{\sqrt {b^2-4 a c}}+20 a c+b^2\right ) \int \frac {1}{c (d+e x)^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d(d+e x)}{2 a \left (b^2-4 a c\right )}+\frac {(d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{2 a \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 \left (b^2-4 a c\right )}-\frac {(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {\frac {\sqrt {c} \left (-\frac {52 a b c}{\sqrt {b^2-4 a c}}+\frac {b^3}{\sqrt {b^2-4 a c}}+20 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {c} \left (\frac {52 a b c}{\sqrt {b^2-4 a c}}-\frac {b^3}{\sqrt {b^2-4 a c}}+20 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} (d+e x)}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} \sqrt {\sqrt {b^2-4 a c}+b}}}{2 a \left (b^2-4 a c\right )}+\frac {(d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{2 a \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )}}{4 \left (b^2-4 a c\right )}-\frac {(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}}{e}\)

input
Int[(d + e*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]
 
output
(-1/4*((d + e*x)*(b + 2*c*(d + e*x)^2))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 
+ c*(d + e*x)^4)^2) + (((d + e*x)*(b*(b^2 + 8*a*c) + c*(b^2 + 20*a*c)*(d + 
 e*x)^2))/(2*a*(b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + ((Sqrt 
[c]*(b^2 + 20*a*c + b^3/Sqrt[b^2 - 4*a*c] - (52*a*b*c)/Sqrt[b^2 - 4*a*c])* 
ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]* 
Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[c]*(b^2 + 20*a*c - b^3/Sqrt[b^2 - 4*a 
*c] + (52*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqr 
t[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(2*a*(b^ 
2 - 4*a*c)))/(4*(b^2 - 4*a*c)))/e
 

3.7.32.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1439
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[d*(d*x)^(m - 1)*(b + 2*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 
1)*(b^2 - 4*a*c))), x] - Simp[d^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m 
- 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x 
] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 
1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1462
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Si 
mp[u^m/(Coefficient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p 
, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 
3.7.32.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.69 (sec) , antiderivative size = 885, normalized size of antiderivative = 2.44

method result size
default \(\frac {\frac {c^{2} e^{6} \left (20 a c +b^{2}\right ) x^{7}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {7 c^{2} d \,e^{5} \left (20 a c +b^{2}\right ) x^{6}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {\left (420 a \,c^{2} d^{2}+21 b^{2} c \,d^{2}+28 a b c +2 b^{3}\right ) c \,e^{4} x^{5}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {5 c d \,e^{3} \left (140 a \,c^{2} d^{2}+7 b^{2} c \,d^{2}+28 a b c +2 b^{3}\right ) x^{4}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {e^{2} \left (700 a \,c^{3} d^{4}+35 b^{2} c^{2} d^{4}+280 b \,c^{2} d^{2} a +20 b^{3} c \,d^{2}+36 a^{2} c^{2}+5 a \,b^{2} c +b^{4}\right ) x^{3}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {d e \left (420 a \,c^{3} d^{4}+21 b^{2} c^{2} d^{4}+280 b \,c^{2} d^{2} a +20 b^{3} c \,d^{2}+108 a^{2} c^{2}+15 a \,b^{2} c +3 b^{4}\right ) x^{2}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {\left (140 a \,c^{3} d^{6}+7 b^{2} c^{2} d^{6}+140 a b \,c^{2} d^{4}+10 b^{3} c \,d^{4}+108 a^{2} c^{2} d^{2}+15 b^{2} a c \,d^{2}+3 b^{4} d^{2}+16 c b \,a^{2}-a \,b^{3}\right ) x}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {d \left (20 a \,c^{3} d^{6}+b^{2} c^{2} d^{6}+28 a b \,c^{2} d^{4}+2 b^{3} c \,d^{4}+36 a^{2} c^{2} d^{2}+5 b^{2} a c \,d^{2}+b^{4} d^{2}+16 c b \,a^{2}-a \,b^{3}\right )}{8 e \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}}{\left (c \,x^{4} e^{4}+4 c d \,e^{3} x^{3}+6 c \,d^{2} e^{2} x^{2}+4 c \,d^{3} e x +b \,e^{2} x^{2}+d^{4} c +2 b d e x +b \,d^{2}+a \right )^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (c \,e^{2} \left (20 a c +b^{2}\right ) \textit {\_R}^{2}+2 d c e \left (20 a c +b^{2}\right ) \textit {\_R} +20 a \,c^{2} d^{2}+b^{2} c \,d^{2}-16 a b c +b^{3}\right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a e}\) \(885\)
risch \(\frac {\frac {c^{2} e^{6} \left (20 a c +b^{2}\right ) x^{7}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {7 c^{2} d \,e^{5} \left (20 a c +b^{2}\right ) x^{6}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {\left (420 a \,c^{2} d^{2}+21 b^{2} c \,d^{2}+28 a b c +2 b^{3}\right ) c \,e^{4} x^{5}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {5 c d \,e^{3} \left (140 a \,c^{2} d^{2}+7 b^{2} c \,d^{2}+28 a b c +2 b^{3}\right ) x^{4}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {e^{2} \left (700 a \,c^{3} d^{4}+35 b^{2} c^{2} d^{4}+280 b \,c^{2} d^{2} a +20 b^{3} c \,d^{2}+36 a^{2} c^{2}+5 a \,b^{2} c +b^{4}\right ) x^{3}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {d e \left (420 a \,c^{3} d^{4}+21 b^{2} c^{2} d^{4}+280 b \,c^{2} d^{2} a +20 b^{3} c \,d^{2}+108 a^{2} c^{2}+15 a \,b^{2} c +3 b^{4}\right ) x^{2}}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {\left (140 a \,c^{3} d^{6}+7 b^{2} c^{2} d^{6}+140 a b \,c^{2} d^{4}+10 b^{3} c \,d^{4}+108 a^{2} c^{2} d^{2}+15 b^{2} a c \,d^{2}+3 b^{4} d^{2}+16 c b \,a^{2}-a \,b^{3}\right ) x}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {d \left (20 a \,c^{3} d^{6}+b^{2} c^{2} d^{6}+28 a b \,c^{2} d^{4}+2 b^{3} c \,d^{4}+36 a^{2} c^{2} d^{2}+5 b^{2} a c \,d^{2}+b^{4} d^{2}+16 c b \,a^{2}-a \,b^{3}\right )}{8 e \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}}{\left (c \,x^{4} e^{4}+4 c d \,e^{3} x^{3}+6 c \,d^{2} e^{2} x^{2}+4 c \,d^{3} e x +b \,e^{2} x^{2}+d^{4} c +2 b d e x +b \,d^{2}+a \right )^{2}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,e^{4} \textit {\_Z}^{4}+4 c d \,e^{3} \textit {\_Z}^{3}+\left (6 c \,d^{2} e^{2}+b \,e^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{3} e c +2 b d e \right ) \textit {\_Z} +d^{4} c +b \,d^{2}+a \right )}{\sum }\frac {\left (\frac {c \,e^{2} \left (20 a c +b^{2}\right ) \textit {\_R}^{2}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {2 d c e \left (20 a c +b^{2}\right ) \textit {\_R}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}-\frac {-20 a \,c^{2} d^{2}-b^{2} c \,d^{2}+16 a b c -b^{3}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}\right ) \ln \left (x -\textit {\_R} \right )}{2 e^{3} c \,\textit {\_R}^{3}+6 c d \,e^{2} \textit {\_R}^{2}+6 c \,d^{2} e \textit {\_R} +2 d^{3} c +b e \textit {\_R} +b d}}{16 a e}\) \(933\)

input
int((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x,method=_RETURNVERBOSE)
 
output
(1/8*c^2*e^6*(20*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^7+7/8*c^2*d*e^5*( 
20*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^6+1/8*(420*a*c^2*d^2+21*b^2*c*d 
^2+28*a*b*c+2*b^3)*c*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^5+5/8*c*d*e^3*(140 
*a*c^2*d^2+7*b^2*c*d^2+28*a*b*c+2*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^4+1/ 
8*e^2*(700*a*c^3*d^4+35*b^2*c^2*d^4+280*a*b*c^2*d^2+20*b^3*c*d^2+36*a^2*c^ 
2+5*a*b^2*c+b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^3+1/8*d*e*(420*a*c^3*d^4+2 
1*b^2*c^2*d^4+280*a*b*c^2*d^2+20*b^3*c*d^2+108*a^2*c^2+15*a*b^2*c+3*b^4)/( 
16*a^2*c^2-8*a*b^2*c+b^4)/a*x^2+1/8*(140*a*c^3*d^6+7*b^2*c^2*d^6+140*a*b*c 
^2*d^4+10*b^3*c*d^4+108*a^2*c^2*d^2+15*a*b^2*c*d^2+3*b^4*d^2+16*a^2*b*c-a* 
b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x+1/8*d/e*(20*a*c^3*d^6+b^2*c^2*d^6+28*a 
*b*c^2*d^4+2*b^3*c*d^4+36*a^2*c^2*d^2+5*a*b^2*c*d^2+b^4*d^2+16*a^2*b*c-a*b 
^3)/(16*a^2*c^2-8*a*b^2*c+b^4)/a)/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2 
+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2+1/16/(16*a^2*c^2-8*a*b^2 
*c+b^4)/a/e*sum((c*e^2*(20*a*c+b^2)*_R^2+2*d*c*e*(20*a*c+b^2)*_R+20*a*c^2* 
d^2+b^2*c*d^2-16*a*b*c+b^3)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c* 
d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+ 
b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+d^4*c+b*d^2+a))
 
3.7.32.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7701 vs. \(2 (319) = 638\).

Time = 0.62 (sec) , antiderivative size = 7701, normalized size of antiderivative = 21.21 \[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")
 
output
Too large to include
 
3.7.32.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Timed out} \]

input
integrate((e*x+d)**2/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)
 
output
Timed out
 
3.7.32.7 Maxima [F]

\[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\int { \frac {{\left (e x + d\right )}^{2}}{{\left ({\left (e x + d\right )}^{4} c + {\left (e x + d\right )}^{2} b + a\right )}^{3}} \,d x } \]

input
integrate((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")
 
output
1/8*((b^2*c^2 + 20*a*c^3)*e^7*x^7 + 7*(b^2*c^2 + 20*a*c^3)*d*e^6*x^6 + (2* 
b^3*c + 28*a*b*c^2 + 21*(b^2*c^2 + 20*a*c^3)*d^2)*e^5*x^5 + 5*(7*(b^2*c^2 
+ 20*a*c^3)*d^3 + 2*(b^3*c + 14*a*b*c^2)*d)*e^4*x^4 + (b^2*c^2 + 20*a*c^3) 
*d^7 + (35*(b^2*c^2 + 20*a*c^3)*d^4 + b^4 + 5*a*b^2*c + 36*a^2*c^2 + 20*(b 
^3*c + 14*a*b*c^2)*d^2)*e^3*x^3 + 2*(b^3*c + 14*a*b*c^2)*d^5 + (21*(b^2*c^ 
2 + 20*a*c^3)*d^5 + 20*(b^3*c + 14*a*b*c^2)*d^3 + 3*(b^4 + 5*a*b^2*c + 36* 
a^2*c^2)*d)*e^2*x^2 + (b^4 + 5*a*b^2*c + 36*a^2*c^2)*d^3 + (7*(b^2*c^2 + 2 
0*a*c^3)*d^6 + 10*(b^3*c + 14*a*b*c^2)*d^4 - a*b^3 + 16*a^2*b*c + 3*(b^4 + 
 5*a*b^2*c + 36*a^2*c^2)*d^2)*e*x - (a*b^3 - 16*a^2*b*c)*d)/((a*b^4*c^2 - 
8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^ 
3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c 
^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b 
^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d)*e 
^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 
 + 16*a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5* 
x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 + 10*(a*b^5*c - 8 
*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e 
^4*x^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b 
^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 
 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 ...
 
3.7.32.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2447 vs. \(2 (319) = 638\).

Time = 0.34 (sec) , antiderivative size = 2447, normalized size of antiderivative = 6.74 \[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
integrate((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")
 
output
-1/16*((b^2*c*e^2*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4) 
) + d/e)^2 + 20*a*c^2*e^2*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2) 
/(c*e^4)) + d/e)^2 - 2*b^2*c*d*e*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a* 
c)*e^2)/(c*e^4)) + d/e) - 40*a*c^2*d*e*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 
- 4*a*c)*e^2)/(c*e^4)) + d/e) + b^2*c*d^2 + 20*a*c^2*d^2 + b^3 - 16*a*b*c) 
*log(x + sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/( 
2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)^3 
 - 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d 
/e)^2 - 2*c*d^3*e - b*d*e + (6*c*d^2*e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 
+ sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)) - (b^2*c*e^2*(sqrt(1/2)*sqrt(-(b 
*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 20*a*c^2*e^2*(sqrt(1/2)* 
sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*b^2*c*d*e*(sqr 
t(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e) + 40*a*c^2*d* 
e*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e) + b^2*c 
*d^2 + 20*a*c^2*d^2 + b^3 - 16*a*b*c)*log(x - sqrt(1/2)*sqrt(-(b*e^2 + sqr 
t(b^2 - 4*a*c)*e^2)/(c*e^4)) + d/e)/(2*c*e^4*(sqrt(1/2)*sqrt(-(b*e^2 + sqr 
t(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^3 + 6*c*d*e^3*(sqrt(1/2)*sqrt(-(b*e^2 
+ sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d/e)^2 + 2*c*d^3*e + b*d*e + (6*c*d^2* 
e^2 + b*e^2)*(sqrt(1/2)*sqrt(-(b*e^2 + sqrt(b^2 - 4*a*c)*e^2)/(c*e^4)) - d 
/e)) + (b^2*c*e^2*(sqrt(1/2)*sqrt(-(b*e^2 - sqrt(b^2 - 4*a*c)*e^2)/(c*e...
 
3.7.32.9 Mupad [B] (verification not implemented)

Time = 12.33 (sec) , antiderivative size = 14584, normalized size of antiderivative = 40.18 \[ \int \frac {(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx=\text {Too large to display} \]

input
int((d + e*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x)
 
output
((x^5*(2*b^3*c*e^4 + 420*a*c^3*d^2*e^4 + 21*b^2*c^2*d^2*e^4 + 28*a*b*c^2*e 
^4))/(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (x^2*(3*b^4*d*e + 21*b^2*c^2*d 
^5*e + 108*a^2*c^2*d*e + 420*a*c^3*d^5*e + 20*b^3*c*d^3*e + 280*a*b*c^2*d^ 
3*e + 15*a*b^2*c*d*e))/(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (7*x^6*(b^2* 
c^2*d*e^5 + 20*a*c^3*d*e^5))/(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (x^7*( 
20*a*c^3*e^6 + b^2*c^2*e^6))/(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (x*(3* 
b^4*d^2 - a*b^3 + 140*a*c^3*d^6 + 10*b^3*c*d^4 + 108*a^2*c^2*d^2 + 7*b^2*c 
^2*d^6 + 16*a^2*b*c + 15*a*b^2*c*d^2 + 140*a*b*c^2*d^4))/(8*a*(b^4 + 16*a^ 
2*c^2 - 8*a*b^2*c)) + (x^3*(b^4*e^2 + 36*a^2*c^2*e^2 + 700*a*c^3*d^4*e^2 + 
 20*b^3*c*d^2*e^2 + 35*b^2*c^2*d^4*e^2 + 5*a*b^2*c*e^2 + 280*a*b*c^2*d^2*e 
^2))/(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (b^4*d^3 + 20*a*c^3*d^7 + 2*b^ 
3*c*d^5 + 36*a^2*c^2*d^3 + b^2*c^2*d^7 - a*b^3*d + 16*a^2*b*c*d + 5*a*b^2* 
c*d^3 + 28*a*b*c^2*d^5)/(8*a*e*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (5*x^4*(1 
40*a*c^3*d^3*e^3 + 7*b^2*c^2*d^3*e^3 + 2*b^3*c*d*e^3 + 28*a*b*c^2*d*e^3))/ 
(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))/(x^2*(6*b^2*d^2*e^2 + 28*c^2*d^6*e^2 
 + 2*a*b*e^2 + 12*a*c*d^2*e^2 + 30*b*c*d^4*e^2) + x^6*(28*c^2*d^2*e^6 + 2* 
b*c*e^6) + x*(4*b^2*d^3*e + 8*c^2*d^7*e + 8*a*c*d^3*e + 12*b*c*d^5*e + 4*a 
*b*d*e) + x^3*(4*b^2*d*e^3 + 56*c^2*d^5*e^3 + 8*a*c*d*e^3 + 40*b*c*d^3*e^3 
) + x^5*(56*c^2*d^3*e^5 + 12*b*c*d*e^5) + x^4*(b^2*e^4 + 70*c^2*d^4*e^4 + 
2*a*c*e^4 + 30*b*c*d^2*e^4) + a^2 + b^2*d^4 + c^2*d^8 + c^2*e^8*x^8 + 2...